
Chapter 7

Linking

Linking is the process of collecting and combining various pieces of code and data into a single file that can
be loaded(copied) into memory and executed. Linking can be performedat compile time, when the source
code is translated into machine code, atload time, when the program is loaded into memory and executed
by the loader, and even atrun time, by application programs. On early computer systems, linking was
performed manually. On modern systems, linking is performed automatically by programs calledlinkers.

Linkers play a crucial role in software development becausethey enableseparate compilation. Instead
of organizing a large application as one monolithic source file, we can decompose it into smaller, more
manageable modules that can be modified and compiled separately. When we change one of these modules,
we simply recompile it and relink the application, without having to recompile the other files.

Linking is usually handled quietly by the linker, and is not an important issue for students who are building
small programs in introductory programming classes. So whybother learning about linking?

• Understanding linkers will help you build large programs.Programmers who build large programs
often encounter linker errors caused by missing modules, missing libraries, or incompatible library
versions. Unless you understand how a linker resolves references, what a library is, and how a linker
uses a library to resolve references, these kinds of errors will be baffling and frustrating.

• Understanding linkers will help you avoid dangerous programming errors.The decisions that Unix
linkers make when they resolve symbol references can silently affect the correctness of your pro-
grams. Programs that incorrectly define multiple global variables pass through the linker without any
warnings in the default case. The resulting programs can exhibit baffling run-time behavior and are
extremely difficult to debug. We will show you how this happens and how to avoid it.

• Understanding linking will help you understand how language scoping rules are implemented.For
example, what is the difference between global and local variables? What does it really mean when
you define a variable or function with thestatic attribute?

• Understanding linking will help you understand other important systems concepts.The executable
object files produced by linkers play key roles in important systems functions such as loading and
running programs, virtual memory, paging, and memory mapping.

623



624 CHAPTER 7. LINKING

• Understanding linking will enable you to exploit shared libraries. For many years, linking was con-
sidered to be fairly straightforward and uninteresting. However, with the increased importance of
shared libraries and dynamic linking in modern operating systems, linking is a sophisticated process
that provides the knowledgeable programmer with significant power. For example, many software
products use shared libraries to upgrade shrink-wrapped binaries at run time. Also, most Web servers
rely on dynamic linking of shared libraries to serve dynamiccontent.

This chapter provides a thorough discussion of all aspects of linking, from traditional static linking, to
dynamic linking of shared libraries at load time, to dynamiclinking of shared libraries at run time. We will
describe the basic mechanisms using real examples, and we will identify situations in which linking issues
can affect the performance and correctness of your programs.

To keep things concrete and understandable, we will couch our discussion in the context of an x86 system
running Linux and using the standard ELF object file format. For clarity, we will focus our discussion on
linking 32-bit code, which is easier to understand than linking 64-bit code.1 However, it is important to
realize that the basic concepts of linking are universal, regardless of the operating system, the ISA, or the
object file format. Details may vary, but the concepts are thesame.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It consists of two source files,main.c andswap.c. Function
main() callsswap, which swaps the two elements in the external global arraybuf. Granted, this is a
strange way to swap two numbers, but it will serve as a small running example throughout this chapter that
will allow us to make some important points about how linkingworks.

Most compilation systems provide acompiler driverthat invokes the language preprocessor, compiler, as-
sembler, and linker, as needed on behalf of the user. For example, to build the example program using the
GNU compilation system, we might invoke theGCC driver by typing the following command to the shell:

unix> gcc -O2 -g -o p main.c swap.c

Figure 7.2 summarizes the activities of the driver as it translates the example program from an ASCII source
file into an executable object file. (If you want to see these steps for yourself, runGCC with the-v option.)
The driver first runs the C preprocessor (cpp), which translates the C source filemain.c into an ASCII
intermediate filemain.i:

cpp [other arguments] main.c /tmp/main.i

Next, the driver runs the C compiler (cc1), which translatesmain.i into an ASCII assembly language file
main.s.

cc1 /tmp/main.i main.c -O2 [other arguments] -o /tmp/main.s

Then, the driver runs the assembler (as), which translatesmain.s into arelocatable object filemain.o:

1You can generate 32-bit code on an x86-64 system usinggcc -m32.



7.2. STATIC LINKING 625

code/link/main.c

1 /* main.c */
2 void swap();
3

4 int buf[2] = {1, 2};
5

6 int main()
7 {
8 swap();
9 return 0;

10 }

code/link/main.c

code/link/swap.c

1 /* swap.c */
2 extern int buf[];
3

4 int *bufp0 = &buf[0];
5 int *bufp1;
6

7 void swap()
8 {
9 int temp;

10

11 bufp1 = &buf[1];
12 temp = *bufp0;
13 *bufp0 = *bufp1;
14 *bufp1 = temp;
15 }

code/link/swap.c

(a)main.c (b) swap.c

Figure 7.1:Example program 1: The example program consists of two source files, main.c and swap.c.
The main function initializes a two-element array of ints, and then calls the swap function to swap the pair.

as [other arguments] -o /tmp/main.o /tmp/main.s

The driver goes through the same process to generateswap.o. Finally, it runs the linker programld, which
combinesmain.o andswap.o, along with the necessary system object files, to create theexecutable
object filep:

ld -o p [system object files and args] /tmp/main.o /tmp/swap.o

To run the executablep, we type its name on the Unix shell’s command line:

unix> ./p

The shell invokes a function in the operating system called the loader, which copies the code and data in the
executable filep into memory, and then transfers control to the beginning of the program.

7.2 Static Linking

Static linkerssuch as the Unixld program take as input a collection of relocatable object files and command
line arguments and generate as output a fully linked executable object file that can be loaded and run. The
input relocatable object files consist of various code and data sections. Instructions are in one section,
initialized global variables are in another section, and uninitialized variables are in yet another section.

To build the executable, the linker must perform two main tasks:



626 CHAPTER 7. LINKING

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

swap.c

swap.o

p

Source files

Relocatable
object files

Fully linked
executable object file

Figure 7.2:Static linking. The linker combines relocatable object files to form an executable object file p.

• Symbol resolution.Object files define and referencesymbols. The purpose of symbol resolution is to
associate each symbol reference with exactly one symbol definition.

• Relocation.Compilers and assemblers generate code and data sections that start at address 0. The
linker relocatesthese sections by associating a memory location with each symbol definition, and
then modifying all of the references to those symbols so thatthey point to this memory location.

The sections that follow describe these tasks in more detail. As you read, keep in mind some basic facts
about linkers: Object files are merely collections of blocksof bytes. Some of these blocks contain program
code, others contain program data, and others contain data structures that guide the linker and loader. A
linker concatenates blocks together, decides on run-time locations for the concatenated blocks, and modi-
fies various locations within the code and data blocks. Linkers have minimal understanding of the target
machine. The compilers and assemblers that generate the object files have already done most of the work.

7.3 Object Files

Object files come in three forms:

• Relocatable object file.Contains binary code and data in a form that can be combined with other
relocatable object files at compile time to create an executable object file.

• Executable object file.Contains binary code and data in a form that can be copied directly into
memory and executed.

• Shared object file.A special type of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run time.

Compilers and assemblers generate relocatable object files(including shared object files). Linkers generate
executable object files. Technically, anobject moduleis a sequence of bytes, and anobject fileis an object
module stored on disk in a file. However, we will use these terms interchangeably.



7.4. RELOCATABLE OBJECT FILES 627

Object file formats vary from system to system. The first Unix systems from Bell Labs used thea.out
format. (To this day, executables are still referred to asa.out files.) Early versions of System V Unix
used the Common Object File format (COFF). Windows NT uses a variant of COFF called the Portable
Executable (PE) format. Modern Unix systems — such as Linux,later versions of System V Unix, BSD
Unix variants, and Sun Solaris — use the UnixExecutable and Linkable Format (ELF). Although our
discussion will focus on ELF, the basic concepts are similar, regardless of the particular format.

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. TheELF headerbegins with a 16-byte
sequence that describes the word size and byte ordering of the system that generated the file. The rest of
the ELF header contains information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or shared), the machine type
(e.g., IA32) the file offset of thesection header table, and the size and number of entries in the section
header table. The locations and sizes of the various sections are described by thesection header table,
which contains a fixed sized entry for each section in the object file.

.data

.symtab

.rel.text

.rel.data

.debug

0

.text

.bss

ELF header

Sections

.strtab

Section header table

.line

Describes
object file
sections

.rodata

Figure 7.3:Typical ELF relocatable object file.

Sandwiched between the ELF header and the section header table are the sections themselves. A typical
ELF relocatable object file contains the following sections:

.text: The machine code of the compiled program.

.rodata: Read-only data such as the format strings inprintf statements, and jump tables for switch
statements (see Problem 7.14).

.data: Initialized global C variables. Local C variables are maintained at run time on the stack, and do
not appear in either the.data or .bss sections.



628 CHAPTER 7. LINKING

.bss: Uninitializedglobal C variables. This section occupies no actual space inthe object file; it is merely
a place holder. Object file formats distinguish between initialized and uninitialized variables for space
efficiency: uninitialized variables do not have to occupy any actual disk space in the object file.

.symtab: A symbol tablewith information about functions and global variables thatare defined and
referenced in the program. Some programmers mistakenly believe that a program must be compiled
with the-g option to get symbol table information. In fact, every relocatable object file has a symbol
table in.symtab. However, unlike the symbol table inside a compiler, the.symtab symbol table
does not contain entries for local variables.

.rel.text: A list of locations in the.text section that will need to be modified when the linker
combines this object file with others. In general, any instruction that calls an external function or
references a global variable will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information is not needed in executable
object files, and is usually omitted unless the user explicitly instructs the linker to include it.

.rel.data: Relocation information for any global variables that are referenced or defined by the mod-
ule. In general, any initialized global variable whose initial value is the address of a global variable
or externally defined function will need to be modified.

.debug: A debugging symbol table with entries for local variables and typedefs defined in the program,
global variables defined and referenced in the program, and the original C source file. It is only
present if the compiler driver is invoked with the-g option.

.line: A mapping between line numbers in the original C source program and machine code instructions
in the .text section. It is only present if the compiler driver is invoked with the-g option.

.strtab: A string table for the symbol tables in the.symtab and.debug sections, and for the section
names in the section headers. A string table is a sequence of null-terminated character strings.

Aside: Why is uninitialized data called.bss?
The use of the term.bss to denote uninitialized data is universal. It was originally an acronym for the “Block
Storage Start” instruction from the IBM 704 assembly language (circa 1957) and the acronym has stuck. A simple
way to remember the difference between the.data and.bss sections is to think of “bss” as an abbreviation for
“Better Save Space!”End Aside.

7.5 Symbols and Symbol Tables

Each relocatable object module,m, has a symbol table that contains information about the symbols that are
defined and referenced bym. In the context of a linker, there are three different kinds of symbols:

• Global symbolsthat are defined by modulem and that can be referenced by other modules. Global
linker symbols correspond tononstaticC functions and global variables that are definedwithout the
C static attribute.

• Global symbols that are referenced by modulem but defined by some other module. Such symbols
are calledexternalsand correspond to C functions and variables that are defined in other modules.



7.5. SYMBOLS AND SYMBOL TABLES 629

• Local symbolsthat are defined and referenced exclusively by modulem. Some local linker symbols
correspond to C functions and global variables that are defined with thestatic attribute. These
symbols are visible anywhere within modulem, but cannot be referenced by other modules. The
sections in an object file and the name of the source file that corresponds to modulem also get local
symbols.

It is important to realize that local linker symbols are not the same as local program variables. The symbol
table in.symtab does not contain any symbols that correspond to local nonstatic program variables. These
are managed at run time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the Cstatic attribute are not managed on
the stack. Instead, the compiler allocates space in.data or .bss for each definition and creates a local
linker symbol in the symbol table with a unique name. For example, suppose a pair of functions in the same
module define a static local variablex:

1 int f()
2 {
3 static int x = 0;
4 return x;
5 }
6

7 int g()
8 {
9 static int x = 1;

10 return x;
11 }

In this case, the compiler allocates space for two integers in.data and exports a pair of unique local linker
symbols to the assembler. For example, it might usex.1 for the definition in functionf andx.2 for the
definition in functiong.

New to C?: Hiding variable and function names withstatic.
C programmers use thestatic attribute to hide variable and function declarations inside modules, much as you
would usepublic andprivate declarations in Java and C++. C source files play the role of modules. Any global
variable or function declared with thestatic attribute is private to that module. Similarly, any global variable
or function declared without thestatic attribute is public and can be accessed by any other module. It is good
programming practice to protect your variables and functions with thestatic attribute wherever possible.End.

Symbol tables are built by assemblers, using symbols exported by the compiler into the assembly-language
.s file. An ELF symbol table is contained in the.symtab section. It contains an array of entries. Fig-
ure 7.4 shows the format of each entry.

Thename is a byte offset into the string table that points to the null-terminated string name of the symbol.
Thevalue is the symbol’s address. For relocatable modules, thevalue is an offset from the beginning
of the section where the object is defined. For executable object files, thevalue is an absolute run-time
address. Thesize is the size (in bytes) of the object. Thetype is usually either data or function. The
symbol table can also contain entries for the individual sections and for the path name of the original source



630 CHAPTER 7. LINKING

code/link/elfstructs.c

1 typedef struct {
2 int name; /* string table offset */
3 int value; /* section offset, or VM address */
4 int size; /* object size in bytes */
5 char type:4, /* data, func, section, or src file name (4 bits) */
6 binding:4; /* local or global (4 bits) */
7 char reserved; /* unused */
8 char section; /* section header index, ABS, UNDEF, */
9 /* or COMMON */

10 } Elf_Symbol;

code/link/elfstructs.c

Figure 7.4:ELF symbol table entry. type and binding are four bits each.

file. So there are distinct types for these objects as well. Thebinding field indicates whether the symbol
is local or global.

Each symbol is associated with some section of the object file, denoted by thesection field, which
is an index into the section header table. There are three special pseudo sections that don’t have entries
in the section header table: ABS is for symbols that should not be relocated. UNDEF is for undefined
symbols, that is, symbols that are referenced in this objectmodule but defined elsewhere. COMMON is
for uninitialized data objects that are not yet allocated. For COMMON symbols, thevalue field gives the
alignment requirement, andsize gives the minimum size.

For example, here are the last three entries in the symbol table for main.o, as displayed by the GNU
READELF tool. The first eight entries, which are not shown, are local symbols that the linker uses internally.

Num: Value Size Type Bind Ot Ndx Name
8: 0 8 OBJECT GLOBAL 0 3 buf
9: 0 17 FUNC GLOBAL 0 1 main

10: 0 0 NOTYPE GLOBAL 0 UND swap

In this example, we see an entry for the definition of global symbol buf, an 8-byte object located at an
offset (i.e.,value) of zero in the.data section. This is followed by the definition of the global symbol
main, a 17-byte function located at an offset of zero in the.text section. The last entry comes from
the reference for the external symbolswap. READELF identifies each section by an integer index.Ndx=1
denotes the.text section, andNdx=3 denotes the.data section.

Similarly, here are the symbol table entries forswap.o:

Num: Value Size Type Bind Ot Ndx Name
8: 0 4 OBJECT GLOBAL 0 3 bufp0
9: 0 0 NOTYPE GLOBAL 0 UND buf

10: 0 39 FUNC GLOBAL 0 1 swap
11: 4 4 OBJECT GLOBAL 0 COM bufp1



7.6. SYMBOL RESOLUTION 631

First, we see an entry for the definition of the global symbolbufp0, which is a 4-byte initialized object
starting at offset 0 in.data. The next symbol comes from the reference to the externalbuf symbol in
the initialization code forbufp0. This is followed by the global symbolswap, a 39-byte function at an
offset of zero in.text. The last entry is the global symbolbufp1, a 4-byte uninitialized data object (with
a 4-byte alignment requirement) that will eventually be allocated as a.bss object when this module is
linked.

Practice Problem 7.1:

This problem concerns theswap.o module from Figure 7.1(b). For each symbol that is defined or
referenced inswap.o, indicate whether or not it will have a symbol table entry in the.symtab section
in moduleswap.o. If so, indicate the module that defines the symbol (swap.o or main.o), the
symbol type (local, global, or extern), and the section (.text, .data, or .bss) it occupies in that
module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf
bufp0
bufp1
swap
temp

7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly one symbol definition from
the symbol tables of its input relocatable object files. Symbol resolution is straightforward for references to
local symbols that are defined in the same module as the reference. The compiler allows only one definition
of each local symbol per module. The compiler also ensures that static local variables, which get local linker
symbols, have unique names.

Resolving references to global symbols, however, is trickier. When the compiler encounters a symbol (either
a variable or function name) that is not defined in the currentmodule, it assumes that it is defined in some
other module, generates a linker symbol table entry, and leaves it for the linker to handle. If the linker is
unable to find a definition for the referenced symbol in any of its input modules, it prints an (often cryptic)
error message and terminates. For example, if we try to compile and link the following source file on a
Linux machine,

1 void foo(void);
2

3 int main() {
4 foo();
5 return 0;
6 }

then the compiler runs without a hitch, but the linker terminates when it cannot resolve the reference tofoo:



632 CHAPTER 7. LINKING

unix> gcc -Wall -O2 -o linkerror linkerror.c
/tmp/ccSz5uti.o: In function ‘main’:
/tmp/ccSz5uti.o(.text+0x7): undefined reference to ‘foo’
collect2: ld returned 1 exit status

Symbol resolution for global symbols is also tricky becausethe same symbol might be defined by multiple
object files. In this case, the linker must either flag an erroror somehow choose one of the definitions
and discard the rest. The approach adopted by Unix systems involves cooperation between the compiler,
assembler, and linker, and can introduce some baffling bugs to the unwary programmer.

Aside: Mangling of linker symbols in C++ and Java.
Both C++ and Java allow overloaded methods that have the samename in the source code but different parameter
lists. So how does the linker tell the difference between these different overloaded functions? Overloaded functions
in C++ and Java work because the compiler encodes each uniquemethod and parameter list combination into a
unique name for the linker. This encoding process is calledmangling, and the inverse processdemangling.

Happily, C++ and Java use compatible mangling schemes. A mangled class name consists of the integer number of
characters in the name followed by the original name. For example, the classFoo is encoded as3Foo. A method
is encoded as the original method name, followed by, followed by the mangled class name, followed by single
letter encodings of each argument. For example,Foo::bar(int, long) is encoded asbar 3Fooil. Similar
schemes are used to mangle global variable and template names. End Aside.

7.6.1 How Linkers Resolve Multiply Defined Global Symbols

At compile time, the compiler exports each global symbol to the assembler as eitherstrongor weak, and the
assembler encodes this information implicitly in the symbol table of the relocatable object file. Functions
and initialized global variables get strong symbols. Uninitialized global variables get weak symbols. For
the example program in Figure 7.1,buf, bufp0, main, andswap are strong symbols;bufp1 is a weak
symbol.

Given this notion of strong and weak symbols, Unix linkers use the following rules for dealing with multiply
defined symbols:

• Rule 1: Multiple strong symbols are not allowed.

• Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol.

• Rule 3: Given multiple weak symbols, choose any of the weak symbols.

For example, suppose we attempt to compile and link the following two C modules:

1 /* foo1.c */
2 int main()
3 {
4 return 0;
5 }

1 /* bar1.c */
2 int main()
3 {
4 return 0;
5 }

In this case, the linker will generate an error message because the strong symbolmain is defined multiple
times (rule 1):



7.6. SYMBOL RESOLUTION 633

unix> gcc foo1.c bar1.c
/tmp/cca015022.o: In function ‘main’:
/tmp/cca015022.o(.text+0x0): multiple definition of ‘main’
/tmp/cca015021.o(.text+0x0): first defined here

Similarly, the linker will generate an error message for thefollowing modules because the strong symbolx
is defined twice (rule 1):

1 /* foo2.c */
2 int x = 15213;
3

4 int main()
5 {
6 return 0;
7 }

1 /* bar2.c */
2 int x = 15213;
3

4 void f()
5 {
6 }

However, ifx is uninitialized in one module, then the linker will quietlychoose the strong symbol defined
in the other (rule 2):

1 /* foo3.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x = 15213;
6

7 int main()
8 {
9 f();

10 printf("x = %d\n", x);
11 return 0;
12 }

1 /* bar3.c */
2 int x;
3

4 void f()
5 {
6 x = 15212;
7 }

At run time, functionf changes the value ofx from 15213 to 15212, which might come as a unwelcome
surprise to the author of functionmain! Notice that the linker normally gives no indication that ithas
detected multiple definitions ofx:

unix> gcc -o foobar3 foo3.c bar3.c
unix> ./foobar3
x = 15212

The same thing can happen if there are two weak definitions ofx (rule 3):



634 CHAPTER 7. LINKING

1 /* foo4.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x;
6

7 int main()
8 {
9 x = 15213;

10 f();
11 printf("x = %d\n", x);
12 return 0;
13 }

1 /* bar4.c */
2 int x;
3

4 void f()
5 {
6 x = 15212;
7 }

The application of rules 2 and 3 can introduce some insidiousrun-time bugs that are incomprehensible to
the unwary programmer, especially if the duplicate symbol definitions have different types. Consider the
following example, in whichx is defined as anint in one module and adouble in another:

1 /* foo5.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x = 15213;
6 int y = 15212;
7

8 int main()
9 {

10 f();
11 printf("x = 0x%x y = 0x%x \n",
12 x, y);
13 return 0;
14 }

1 /* bar5.c */
2 double x;
3

4 void f()
5 {
6 x = -0.0;
7 }

On an IA32/Linux machine,doubles are 8 bytes andints are 4 bytes. Thus, the assignmentx = -0.0
in line 6 ofbar5.c will overwrite the memory locations forx andy (lines 5 and 6 infoo5.c) with the
double-precision floating-point representation of negative zero!

linux> gcc -o foobar5 foo5.c bar5.c
linux> ./foobar5
x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it occurs silently, with no warning from the compilation
system, and because it typically manifests itself much later in the execution of the program, far away from
where the error occurred. In a large system with hundreds of modules, a bug of this kind is extremely
hard to fix, especially because many programmers are not aware of how linkers work. When in doubt,
invoke the linker with a flag such as theGCC-fno-common flag, which triggers an error if it encounters
multiply-defined global symbols.



7.6. SYMBOL RESOLUTION 635

Practice Problem 7.2:

In this problem, letREF(x.i) --> DEF(x.k) denote that the linker will associate an arbitrary
reference to symbolx in modulei to the definition ofx in modulek. For each example that follows,
use this notation to indicate how the linker would resolve references to the multiply defined symbol in
each module. If there is a link-time error (rule 1), write “ERROR.” If the linker arbitrarily chooses one
of the definitions (rule 3), write “UNKNOWN.”

A. /* Module 1 */
int main()
{
}

/* Module 2 */
int main;
int p2()
{
}

(a) REF(main.1) --> DEF(_____.___)

(b) REF(main.2) --> DEF(_____.___)

B. /* Module 1 */
void main()
{
}

/* Module 2 */
int main=1;
int p2()
{
}

(a) REF(main.1) --> DEF(_____.___)

(b) REF(main.2) --> DEF(_____.___)

C. /* Module 1 */
int x;
void main()
{
}

/* Module 2 */
double x=1.0;
int p2()
{
}

(a) REF(x.1) --> DEF(_____.___)

(b) REF(x.2) --> DEF(_____.___)

7.6.2 Linking with Static Libraries

So far, we have assumed that the linker reads a collection of relocatable object files and links them together
into an output executable file. In practice, all compilationsystems provide a mechanism for packaging
related object modules into a single file called astatic library, which can then be supplied as input to the
linker. When it builds the output executable, the linker copies only the object modules in the library that are
referenced by the application program.

Why do systems support the notion of libraries? Consider ANSI C, which defines an extensive collection of
standard I/O, string manipulation, and integer math functions such asatoi, printf, scanf, strcpy,
andrand. They are available to every C program in thelibc.a library. ANSI C also defines an extensive
collection of floating-point math functions such assin, cos, andsqrt in thelibm.a library.

Consider the different approaches that compiler developers might use to provide these functions to users
without the benefit of static libraries. One approach would be to have the compiler recognize calls to the



636 CHAPTER 7. LINKING

standard functions and to generate the appropriate code directly. Pascal, which provides a small set of
standard functions, takes this approach, but it is not feasible for C, because of the large number of standard
functions defined by the C standard. It would add significant complexity to the compiler and would require
a new compiler version each time a function was added, deleted, or modified. To application programmers,
however, this approach would be quite convenient because the standard functions would always be available.

Another approach would be to put all of the standard C functions in a single relocatable object module, say,
libc.o, that application programmers could link into their executables:

unix> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation of the standard functions from
the implementation of the compiler, and would still be reasonably convenient for programmers. However, a
big disadvantage is that every executable file in a system would now contain a complete copy of the collec-
tion of standard functions, which would be extremely wasteful of disk space. (On a typical system,libc.a
is about 8 MB andlibm.a is about 1 MB.) Worse, each running program would now containits own copy
of these functions in memory, which would be extremely wasteful of memory. Another big disadvantage
is that any change to any standard function, no matter how small, would require the library developer to
recompile the entire source file, a time-consuming operation that would complicate the development and
maintenance of the standard functions.

We could address some of these problems by creating a separate relocatable file for each standard function
and storing them in a well-known directory. However, this approach would require application programmers
to explicitly link the appropriate object modules into their executables, a process that would be error prone
and time consuming:

unix> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of a static library was developed to resolve the disadvantages of these various approaches. Re-
lated functions can be compiled into separate object modules and then packaged in a single static library
file. Application programs can then use any of the functions defined in the library by specifying a single file
name on the command line. For example, a program that uses functions from the standard C library and the
math library could be compiled and linked with a command of the form

unix> gcc main.c /usr/lib/libm.a /usr/lib/libc.a

At link time, the linker will only copy the object modules that are referenced by the program, which reduces
the size of the executable on disk and in memory. On the other hand, the application programmer only needs
to include the names of a few library files. (In fact, C compiler drivers always passlibc.a to the linker,
so the reference tolibc.a mentioned previously is unnecessary.)

On Unix systems, static libraries are stored on disk in a particular file format known as anarchive. An
archive is a collection of concatenated relocatable objectfiles, with a header that describes the size and
location of each member object file. Archive filenames are denoted with the.a suffix. To make our
discussion of libraries concrete, suppose that we want to provide the vector routines in Figure 7.5 in a static
library calledlibvector.a.

To create the library, we would use theAR tool as follows:



7.6. SYMBOL RESOLUTION 637

code/link/addvec.c

1 void addvec(int *x, int *y,
2 int *z, int n)
3 {
4 int i;
5

6 for (i = 0; i < n; i++)
7 z[i] = x[i] + y[i];
8 }

code/link/addvec.c

(a)addvec.o

code/link/multvec.c

1 void multvec(int *x, int *y,
2 int *z, int n)
3 {
4 int i;
5

6 for (i = 0; i < n; i++)
7 z[i] = x[i] * y[i];
8 }

code/link/multvec.c

(a)multvec.o

Figure 7.5:Member object files in libvector.a.

unix> gcc -c addvec.c multvec.c
unix> ar rcs libvector.a addvec.o multvec.o

To use the library, we might write an application such asmain2.c in Figure 7.6, which invokes the
addvec library routine. (The include (header) filevector.h defines the function prototypes for the
routines inlibvector.a.)

code/link/main2.c

1 /* main2.c */
2 #include <stdio.h>
3 #include "vector.h"
4

5 int x[2] = {1, 2};
6 int y[2] = {3, 4};
7 int z[2];
8

9 int main()
10 {
11 addvec(x, y, z, 2);
12 printf("z = [%d %d]\n", z[0], z[1]);
13 return 0;
14 }

code/link/main2.c

Figure 7.6:Example program 2: This program calls member functions in the static libvector.a library.

To build the executable, we would compile and link the input filesmain.o andlibvector.a:

unix> gcc -O2 -c main2.c
unix> gcc -static -o p2 main2.o ./libvector.a


