Chapter 7
Linking

Linking is the process of collecting and combining variotecps of code and data into a single file that can
beloaded(copied) into memory and executed. Linking can be perforatedmpile timewhen the source
code is translated into machine codelcad time when the program is loaded into memory and executed
by theloader, and even atun time by application programs. On early computer systems, dipkivas
performed manually. On modern systems, linking is perfaraaomatically by programs calldidkers

Linkers play a crucial role in software development becahsy enableseparate compilation Instead

of organizing a large application as one monolithic sourls fiie can decompose it into smaller, more
manageable modules that can be modified and compiled selyai&then we change one of these modules,
we simply recompile it and relink the application, withoaving to recompile the other files.

Linking is usually handled quietly by the linker, and is natimportant issue for students who are building
small programs in introductory programming classes. So bdtier learning about linking?

e Understanding linkers will help you build large programBrogrammers who build large programs
often encounter linker errors caused by missing modulessing libraries, or incompatible library
versions. Unless you understand how a linker resolvesardess, what a library is, and how a linker
uses a library to resolve references, these kinds of erridirbenbaffling and frustrating.

e Understanding linkers will help you avoid dangerous pragraing errors. The decisions that Unix
linkers make when they resolve symbol references can lsilaffect the correctness of your pro-
grams. Programs that incorrectly define multiple globalaldes pass through the linker without any
warnings in the default case. The resulting programs caibgXaffling run-time behavior and are
extremely difficult to debug. We will show you how this happemd how to avoid it.

e Understanding linking will help you understand how langeia@goping rules are implementeBor
example, what is the difference between global and locahbbes? What does it really mean when
you define a variable or function with tisa at i ¢ attribute?

e Understanding linking will help you understand other imjamoit systems concept3.he executable
object files produced by linkers play key roles in importaygtems functions such as loading and
running programs, virtual memory, paging, and memory mappi

623

624 CHAPTER 7. LINKING

e Understanding linking will enable you to exploit shareddibes. For many years, linking was con-
sidered to be fairly straightforward and uninteresting. weweer, with the increased importance of
shared libraries and dynamic linking in modern operatingieays, linking is a sophisticated process
that provides the knowledgeable programmer with signifiggower. For example, many software
products use shared libraries to upgrade shrink-wrapp®atibs at run time. Also, most Web servers
rely on dynamic linking of shared libraries to serve dynaouatent.

This chapter provides a thorough discussion of all aspectmlong, from traditional static linking, to
dynamic linking of shared libraries at load time, to dynaimging of shared libraries at run time. We will
describe the basic mechanisms using real examples, andlweentiify situations in which linking issues
can affect the performance and correctness of your programs

To keep things concrete and understandable, we will coucldisaussion in the context of an x86 system
running Linux and using the standard ELF object file formatr &larity, we will focus our discussion on
linking 32-bit code, which is easier to understand thanitigkt4-bit code: However, it is important to
realize that the basic concepts of linking are universglardless of the operating system, the ISA, or the
object file format. Details may vary, but the concepts arestrae.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It consists of two sediles, mai n. ¢ andswap. c. Function

mai n() callsswap, which swaps the two elements in the external global abnafy. Granted, this is a
strange way to swap two numbers, but it will serve as a smating example throughout this chapter that
will allow us to make some important points about how linkimgrks.

Most compilation systems providecampiler driverthat invokes the language preprocessor, compiler, as-

sembler, and linker, as needed on behalf of the user. For@gato build the example program using the
GNU compilation system, we might invoke tieec driver by typing the following command to the shell:

uni x> gcc -2 -g -0 p nain.c swap.c

Figure 7.2 summarizes the activities of the driver as itdi@es the example program from an ASCII source
file into an executable object file. (If you want to see thespsfor yourself, rurccc with the- v option.)
The driver first runs the C preprocessopf), which translates the C source fitli n. ¢ into an ASCII
intermediate filerai n. i :

cpp [other argunents] main.c /tnp/main.i

Next, the driver runs the C compilez € 1), which translatesai n. i into an ASCIl assembly language file
mai n. s.

ccl /tnp/main.i main.c -2 [other argunments] -o /tnp/main.s

Then, the driver runs the assemblas], which translatesai n. s into arelocatable object filerai n. o:

1You can generate 32-bit code on an x86-64 system uginyg - NB2.

7.2. STATIC LINKING 625

code/link/swap.c

_ _ 1 /% swap.c */
code/link/main.c 2 extern int buf[];
[* i */ .
1/ main.c : 4 int *bufp0 = &buf[0];
2 void swap(); 5 int *bufpl;
3
. 6
4int buf[2] = {1, 2}; 7 voi d swap()
5 _ _ 8 {
6 int main() 9 int tenp;
7 { 10
8 swap().o_ 11 buf p1 = &buf[1];
9 return O, 12 tenp = *buf pO;
10 } 13 *buf p0 = =buf pl;
code/link/main.c 14 *bufpl = temp;
15 }
code/link/swap.c
(@ymai n. c (b) swap. c

Figure 7.1:Example program 1: The example program consists of two source files, mai n. ¢ and swap. c.
The mai n function initializes a two-element array of ints, and then calls the swap function to swap the pair.

as [other argunments] -o /tnp/main.o /tnp/main.s

The driver goes through the same process to gengvap. 0. Finally, it runs the linker progrard, which
combinesmai n. o0 andswap. o, along with the necessary system object files, to createxbeutable
object filep:

Id -0 p [systemobject files and args] /tnp/nain.o /tnp/swap.o

To run the executablp, we type its name on the Unix shell’s command line:

uni x> ./p

The shell invokes a function in the operating system catiedioader, which copies the code and data in the
executable filgp into memory, and then transfers control to the beginnindgnefdrogram.

7.2 Static Linking

Static linkerssuch as the Unikd program take as input a collection of relocatable objed filed command
line arguments and generate as output a fully linked exbitzbject file that can be loaded and run. The
input relocatable object files consist of various code ard dactions. Instructions are in one section,
initialized global variables are in another section, anishitialized variables are in yet another section.

To build the executable, the linker must perform two maiksas

626 CHAPTER 7. LINKING

main. c swap. ¢ Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
.i i Relocatable
mai n. o swap. o object files
| Linker (I d) |
i Fully linked

P executable object file

Figure 7.2:Static linking. The linker combines relocatable object files to form an executable object file p.

e Symbol resolutionObject files define and referensgmbols The purpose of symbol resolution is to
associate each symbol reference with exactly one symbaiitilei.

e Relocation. Compilers and assemblers generate code and data sectidrsiatt at address 0. The
linker relocatesthese sections by associating a memory location with eactbalydefinition, and
then modifying all of the references to those symbols sotti&t point to this memory location.

The sections that follow describe these tasks in more defailyou read, keep in mind some basic facts
about linkers: Object files are merely collections of blookbytes. Some of these blocks contain program
code, others contain program data, and others contain ttatauses that guide the linker and loader. A
linker concatenates blocks together, decides on run-too&tions for the concatenated blocks, and modi-
fies various locations within the code and data blocks. Limkeve minimal understanding of the target
machine. The compilers and assemblers that generate thet filgs have already done most of the work.

7.3 Object Files

Object files come in three forms:

e Relocatable object fileContains binary code and data in a form that can be combin#d other
relocatable object files at compile time to create an exéteibject file.

e Executable obiject file.Contains binary code and data in a form that can be copiedtljirmto
memory and executed.

e Shared object fileA special type of relocatable object file that can be loadémnmemory and linked
dynamically, at either load time or run time.

Compilers and assemblers generate relocatable objectifiisding shared object files). Linkers generate
executable object files. Technically, abject modulaes a sequence of bytes, and alnject fileis an object
module stored on disk in a file. However, we will use these semterchangeably.

7.4. RELOCATABLE OBJECT FILES 627

Object file formats vary from system to system. The first Unigtems from Bell Labs used tlee out
format. (To this day, executables are still referred t@asut files.) Early versions of System V Unix
used the Common Object File format (COFF). Windows NT usearant of COFF called the Portable
Executable (PE) format. Modern Unix systems — such as Lifater versions of System V Unix, BSD
Unix variants, and Sun Solaris — use the Uiixecutable and Linkable Format (ELFAlthough our
discussion will focus on ELF, the basic concepts are sifnmidgyardless of the particular format.

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable ciiite. TheELF headerbegins with a 16-byte
sequence that describes the word size and byte ordering alfytem that generated the file. The rest of
the ELF header contains information that allows a linkerdmsp and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., rekddaf executable, or shared), the machine type
(e.g., 1A32) the file offset of thesection header tabjeand the size and number of entries in the section
header table. The locations and sizes of the various sectiom described by theection header table
which contains a fixed sized entry for each section in theablije.

ELF header

. text

.rodata

.data

. bss

.synt ab

Sections
.rel . text

.rel.data

. debug

.line

i .strtab
Describes

object file
sections

Section header table

——

Figure 7.3:Typical ELF relocatable object file.

Sandwiched between the ELF header and the section headleatabthe sections themselves. A typical
ELF relocatable object file contains the following sections

. text: The machine code of the compiled program.

. rodat a: Read-only data such as the format stringptin nt f statements, and jump tables for switch
statements (see Problem 7.14).

. dat a: Initialized global C variables. Local C variables are maintained at ime bn the stack, and do
not appear in either thedat a or. bss sections.

628

. bss:

CHAPTER 7. LINKING

Uninitializedglobal C variables. This section occupies no actual spaiteiabject file; it is merely
a place holder. Object file formats distinguish betweerilided and uninitialized variables for space
efficiency: uninitialized variables do not have to occupy antual disk space in the object file.

.synt ab: A symbol tablewith information about functions and global variables thet defined and

.rel

.rel

referenced in the program. Some programmers mistakenigvieghat a program must be compiled
with the- g option to get symbol table information. In fact, every reltable object file has a symbol
table in. synt ab. However, unlike the symbol table inside a compiler, tlsg/ nt ab symbol table
does not contain entries for local variables.

.text: A list of locations in the. t ext section that will need to be modified when the linker
combines this object file with others. In general, any irdtam that calls an external function or
references a global variable will need to be modified. On therchand, instructions that call local
functions do not need to be modified. Note that relocationrinfition is not needed in executable
object files, and is usually omitted unless the user explicistructs the linker to include it.

. dat a: Relocation information for any global variables that afemenced or defined by the mod-
ule. In general, any initialized global variable whoseiativalue is the address of a global variable
or externally defined function will need to be modified.

. debug: A debugging symbol table with entries for local variabled &ypedefs defined in the program,

global variables defined and referenced in the program, lamdtiginal C source file. It is only
present if the compiler driver is invoked with thg option.

. l'ine: Amapping between line numbers in the original C source @nogand machine code instructions

in the .text section. It is only present if the compiler drii@invoked with the- g option.

. strtab: Astring table for the symbol tables in thsynt ab and. debug sections, and for the section

7.5

names in the section headers. A string table is a sequenadl-@éérminated character strings.

Aside: Why is uninitialized data called. bss?

The use of the termbss to denote uninitialized data is universal. It was origipalh acronym for the “Block
Storage Start” instruction from the IBM 704 assembly largguécirca 1957) and the acronym has stuck. A simple
way to remember the difference between thiat a and. bss sections is to think of “bss” as an abbreviation for
“Better Save Space!End Aside.

Symbols and Symbol Tables

Each relocatable object modute, has a symbol table that contains information about the sysrthat are
defined and referenced by. In the context of a linker, there are three different kinflsyonbols:

Global symbolghat are defined by module and that can be referenced by other modules. Global
linker symbols correspond toonstaticC functions and global variables that are defim@thoutthe
Cstati c attribute.

Global symbols that are referenced by moduldut defined by some other module. Such symbols
are calledexternalsand correspond to C functions and variables that are defmether modules.

7.5. SYMBOLS AND SYMBOL TABLES 629

e Local symbolghat are defined and referenced exclusively by modulesome local linker symbols
correspond to C functions and global variables that are efinith thest at i ¢ attribute. These
symbols are visible anywhere within modue, but cannot be referenced by other modules. The
sections in an object file and the name of the source file tha¢geonds to module: also get local
symbols.

It is important to realize that local linker symbols are ra same as local program variables. The symbol
table in. synt ab does not contain any symbols that correspond to local nompt@gram variables. These
are managed at run time on the stack and are not of interdst toker.

Interestingly, local procedure variables that are definéd the Cst at i ¢ attribute are not managed on

the stack. Instead, the compiler allocates spacediat a or . bss for each definition and creates a local

linker symbol in the symbol table with a unique name. For exansuppose a pair of functions in the same
module define a static local variabte

1int f()

2 {

3 static int x = 0O;
4 return x;

5}

6

7 int g()

8 {

9 static int x = 1;
10 return x;

11 }

In this case, the compiler allocates space for two integierslat a and exports a pair of unique local linker
symbols to the assembler. For example, it mightxisé for the definition in functiorf andx. 2 for the
definition in functiong.

New to C?: Hiding variable and function names withst ati c.

C programmers use ttet at i ¢ attribute to hide variable and function declarations iagitbdules, much as you
would usepublic and private declarations in Java and C++. C source files play the role afules. Any global
variable or function declared with thet at i ¢ attribute is private to that module. Similarly, any globakiable
or function declared without thet at i ¢ attribute is public and can be accessed by any other modtie gbod
programming practice to protect your variables and fumstiwith thest at i ¢ attribute wherever possibl&nd.

Symbol tables are built by assemblers, using symbols exghdny the compiler into the assembly-language
. s file. An ELF symbol table is contained in thesynt ab section. It contains an array of entries. Fig-
ure 7.4 shows the format of each entry.

Thenane is a byte offset into the string table that points to the mettninated string name of the symbol.
Theval ue is the symbol’'s address. For relocatable modulesytieue is an offset from the beginning
of the section where the object is defined. For executablecbfijes, theval ue is an absolute run-time
address. Thsi ze is the size (in bytes) of the object. Thg pe is usually either data or function. The
symbol table can also contain entries for the individuatieas and for the path name of the original source

630 CHAPTER 7. LINKING

code/link/elfstructs.c

1 typedef struct {

2 i nt nane; [+ string table offset =/

3 int val ue; /+ section offset, or VM address =*/

4 int size; /* object size in bytes */

5 char type: 4, [+ data, func, section, or src file name (4 bits) =*/
6 binding:4; [/* local or global (4 bits) =/

7 char reserved; /* unused x/

8 char section; /+ section header index, ABS, UNDEF, =/

9 [+ or COVMON =/

10 } Elf_Synbol;

code/link/elfstructs.c

Figure 7.4:ELF symbol table entry. t ype and bi ndi ng are four bits each.

file. So there are distinct types for these objects as wekbimdi ng field indicates whether the symbol
is local or global.

Each symbol is associated with some section of the objectdédaoted by thesect i on field, which

is an index into the section header table. There are thregadgEseudo sections that don't have entries
in the section header table: ABS is for symbols that shouldbeorelocated. UNDEF is for undefined
symbols, that is, symbols that are referenced in this objesdule but defined elsewhere. COMMON is
for uninitialized data objects that are not yet allocateor ECOMMON symbols, theral ue field gives the
alignment requirement, ared ze gives the minimum size.

For example, here are the last three entries in the symbld tabnai n. o, as displayed by the GNU
READELF tool. The first eight entries, which are not shown, are logailsols that the linker uses internally.

Num Val ue Size Type Bi nd O Ndx Nane
8: 0 8 OBJECT G.OBAL O 3 buf
9: 0 17 FUNC GLOBAL O 1 main
10: 0 0 NOTYPE GLOBAL 0 UND swap

In this example, we see an entry for the definition of globathlsgl buf , an 8-byte object located at an
offset (i.e.,val ue) of zero in the. dat a section. This is followed by the definition of the global syohb
mai n, a 17-byte function located at an offset of zero in theext section. The last entry comes from
the reference for the external symisalap. READELF identifies each section by an integer inddkix=1
denotes the t ext section, andNdx=3 denotes the dat a section.

Similarly, here are the symbol table entries $avap. o:

Num Val ue Size Type Bi nd O Ndx Nane

8: 0 4 OBJECT GLOBAL O 3 buf p0
9: 0 0 NOTYPE GLOBAL 0 UND buf

10: 0 39 FUNC GLOBAL O 1 swap
11: 4 4 OBJECT GLOBAL 0 COM bufpl

7.6. SYMBOL RESOLUTION 631

First, we see an entry for the definition of the global synief p0, which is a 4-byte initialized object
starting at offset 0 in dat a. The next symbol comes from the reference to the extdrnél symbol in
the initialization code fobuf p0. This is followed by the global symbawap, a 39-byte function at an
offset of zero in t ext . The last entry is the global symbouf p1, a 4-byte uninitialized data object (with
a 4-byte alignment requirement) that will eventually beedited as a bss object when this module is
linked.

Practice Problem 7.1

This problem concerns thewap. o module from Figure 7.1(b). For each symbol that is defined or
referenced iswap. 0, indicate whether or not it will have a symbol table entrnyfint synt ab section

in moduleswap. o. If so, indicate the module that defines the symbseln@p. o or mai n. 0), the
symbol type (local, global, or extern), and the sectiohgxt , . dat a, or. bss) it occupies in that
module.

| Symbol || swap. o . synt ab entry? | Symbol type| Module where defined Section]
buf
buf p0
buf p1
swap
tenp

7.6 Symbol Resolution

The linker resolves symbol references by associating ederence with exactly one symbol definition from
the symbol tables of its input relocatable object files. Sghmbsolution is straightforward for references to
local symbols that are defined in the same module as the neferd@he compiler allows only one definition
of each local symbol per module. The compiler also ensuggssthtic local variables, which get local linker
symbols, have unique names.

Resolving references to global symbols, however, is tickivhen the compiler encounters a symbol (either
a variable or function name) that is not defined in the curneodlule, it assumes that it is defined in some
other module, generates a linker symbol table entry, anckted for the linker to handle. If the linker is
unable to find a definition for the referenced symbol in anytofriput modules, it prints an (often cryptic)
error message and terminates. For example, if we try to demapid link the following source file on a
Linux machine,

1 void foo(void);
2
3int main() {

4 foo();
5 return O;
6}

then the compiler runs without a hitch, but the linker terat@s when it cannot resolve the referencedo:

632 CHAPTER 7. LINKING

uni x> gcc -Wall -2 -o linkerror linkerror.c
/tmp/ccSz5uti.o: In function ‘main’:

/trp/ ccSz5uti.o(.text+0x7): undefined reference to ‘foo’
collect2: Id returned 1 exit status

Symbol resolution for global symbols is also tricky becatimesame symbol might be defined by multiple
object files. In this case, the linker must either flag an earosomehow choose one of the definitions
and discard the rest. The approach adopted by Unix systemlvés cooperation between the compiler,
assembler, and linker, and can introduce some baffling lmuggetunwary programmer.

Aside: Mangling of linker symbols in C++ and Java.

Both C++ and Java allow overloaded methods that have the same in the source code but different parameter
lists. So how does the linker tell the difference betweeseétdifferent overloaded functions? Overloaded functions
in C++ and Java work because the compiler encodes each umgth®d and parameter list combination into a
unique name for the linker. This encoding process is catladgling and the inverse procegdemangling

Happily, C++ and Java use compatible mangling schemes. Ajl@aiclass name consists of the integer number of
characters in the name followed by the original name. Fomgie, the clas§oo is encoded a8Foo. A method

is encoded as the original method name, followed hyollowed by the mangled class name, followed by single
letter encodings of each argument. For examipte: : bar (i nt, | ong) isencoded abar __3Fooi | . Similar
schemes are used to mangle global variable and templatesnBnmetAside.

7.6.1 How Linkers Resolve Multiply Defined Global Symbols

At compile time, the compiler exports each global symbohmassembler as eithstrongor weak and the
assembler encodes this information implicitly in the syirtable of the relocatable object file. Functions
and initialized global variables get strong symbols. Uitized global variables get weak symbols. For
the example program in Figure 7uf , buf p0O, mai n, andswap are strong symbolfuf pl is a weak
symbol.

Given this notion of strong and weak symbols, Unix linkers tee following rules for dealing with multiply
defined symbols:

e Rule 1: Multiple strong symbols are not allowed.
e Rule 2: Given a strong symbol and multiple weak symbols, skdbe strong symbol.

e Rule 3: Given multiple weak symbols, choose any of the weak®}s.

For example, suppose we attempt to compile and link theviatig two C modules:

1 /* fool.c */ 1 /* barl.c */
2 int main() 2 int main()
3 3 {

4 return O; 4 return O;
5} 5}

In this case, the linker will generate an error message Isecdne strong symbartai n is defined multiple
times (rule 1):

7.6. SYMBOL RESOLUTION 633

uni x> gcc fool.c barl.c

/tnmp/ cca015022.0: In function ‘main’

/trp/ cca015022. o(. text +0x0): multiple definition of ‘main’
/trp/ cca015021. o(. text +0x0): first defined here

Similarly, the linker will generate an error message forftiilkowing modules because the strong symkol
is defined twice (rule 1):

1 /* foo2.c =/ 1 /* bar2.c =/

2 int x = 15213; 2 int x = 15213;
3 3

4 int main() 4 void f()

5 { 5 {

6 return O; 6 }

7}

However, ifx is uninitialized in one module, then the linker will quiettjhoose the strong symbol defined
in the other (rule 2):

1/ foo3.c =/ 1 /* bar3.c */
2 #include <stdio. h> 2 int Xx;

3 void f(void); 3

4 4 void f()

5 int x = 15213; 5 {

6 6 x = 15212
7 int main() 7}

8 {

9 f();

10 printf("x = %\n", X);

11 return O;

12 }

At run time, functionf changes the value of from 15213 to 15212, which might come as a unwelcome
surprise to the author of functiomai n! Notice that the linker normally gives no indication thathias
detected multiple definitions of:

uni x> gcc -o foobar3 foo3.c bar3.c
uni x> ./ foobar3
x = 15212

The same thing can happen if there are two weak definitioms(nile 3):

634 CHAPTER 7. LINKING

1 /+ food.c =/ 1 /* bard.c =/
2 #include <stdio. h> 2 int x;

3 void f(void); 3

4 4 void f()

5 int x; 5 {

6 6 x = 15212
7 int main() 7}

8 {

9 x = 15213;

10 f();

11 printf("x = %\n", X);

12 return O;

13 }

The application of rules 2 and 3 can introduce some insidianstime bugs that are incomprehensible to
the unwary programmer, especially if the duplicate symlafinitions have different types. Consider the
following example, in whiclx is defined as annt in one module and doubl e in another:

1/ foob.c */

2 #include <stdio. h> ; GZUE?;5*F */
3 void f(void); 5 '

4 .

5int x = 15213; ;‘}’O'd rO

3 int y = 15212; 5 X = -0.0:
g int main() 7}

9 {

10 f();

11 printf("x = Ox% y = Ox% \n",

12 X, Y);

13 return O;

14 }

On an 1A32/Linux machinejoubl es are 8 bytes andnt s are 4 bytes. Thus, the assignmgnt= - 0. 0
in line 6 of bar 5. ¢ will overwrite the memory locations for andy (lines 5 and 6 irf 005. ¢) with the
double-precision floating-point representation of negatiero!

[i nux> gcc -o foobar5 foo5.c barb.c
['i nux> ./foobar5
x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it ociterdlg with no warning from the compilation
system, and because it typically manifests itself muchr iatéhe execution of the program, far away from
where the error occurred. In a large system with hundreds arfutes, a bug of this kind is extremely
hard to fix, especially because many programmers are notasianow linkers work. When in doubt,
invoke the linker with a flag such as tleecc - f no- conmon flag, which triggers an error if it encounters
multiply-defined global symbols.

7.6. SYMBOL RESOLUTION 635

Practice Problem 7.2

In this problem, letREF(x. i) --> DEF(x. k) denote that the linker will associate an arbitrary
reference to symbol in modulei to the definition ofx in modulek. For each example that follows,

use this notation to indicate how the linker would resolMemences to the multiply defined symbol in

each module. If there is a link-time error (rule 1), write “BRR.” If the linker arbitrarily chooses one

of the definitions (rule 3), write “UNKNOWN.”

A. /* Module 1 */ /* Module 2 =/
int main() int main;
{ int p2()
} {

}
(a) REF(main.1) -->DEF(___ .)
(b) REF(main. 2) --> DEF()

B. /+ Module 1 =/ /* Module 2 =/
voi d mai n() int main=1;
{ int p2()

} {

}
(@ REF(main. 1) --> DEF()
(b) REF(main. 2) --> DEF()

C./* NModule 1 =/ /* Module 2 =/
int x; doubl e x=1.0;
voi d mai n() int p2()

{ {
} }
(@) REF(x.1) --> DEF(___)
(b) REF(x.2) --> DEF(___)

7.6.2 Linking with Static Libraries

So far, we have assumed that the linker reads a collectioelatatable object files and links them together
into an output executable file. In practice, all compilat&ystems provide a mechanism for packaging
related object modules into a single file calledtatic library, which can then be supplied as input to the
linker. When it builds the output executable, the linkeriespnly the object modules in the library that are
referenced by the application program.

Why do systems support the notion of libraries? Consider KBISvhich defines an extensive collection of
standard 1/O, string manipulation, and integer math fumstisuch aat oi , pri ntf, scanf, strcpy,
andr and. They are available to every C program in thebc. a library. ANSI C also defines an extensive
collection of floating-point math functions suchsisn, cos, andsqrt inthel i bm a library.

Consider the different approaches that compiler devetopgght use to provide these functions to users
without the benefit of static libraries. One approach wowgdd have the compiler recognize calls to the

636 CHAPTER 7. LINKING

standard functions and to generate the appropriate codetlgtir Pascal, which provides a small set of
standard functions, takes this approach, but it is notéa$or C, because of the large number of standard
functions defined by the C standard. It would add significamiglexity to the compiler and would require
a new compiler version each time a function was added, dtletamodified. To application programmers,
however, this approach would be quite convenient becaesddndard functions would always be available.

Another approach would be to put all of the standard C funstio a single relocatable object module, say,
I'i bc. o, that application programmers could link into their exadlgs:

uni x> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple tpiementation of the standard functions from
the implementation of the compiler, and would still be resday convenient for programmers. However, a
big disadvantage is that every executable file in a systemdymw contain a complete copy of the collec-
tion of standard functions, which would be extremely wastef disk space. (On a typical systehi,bc. a

is about 8 MB and i bm a is about 1 MB.) Worse, each running program would now contaiown copy

of these functions in memory, which would be extremely wastef memory. Another big disadvantage
is that any change to any standard function, no matter how,swauld require the library developer to
recompile the entire source file, a time-consuming opearatiat would complicate the development and
maintenance of the standard functions.

We could address some of these problems by creating a sepel@tatable file for each standard function
and storing them in a well-known directory. However, thipaach would require application programmers
to explicitly link the appropriate object modules into thexecutables, a process that would be error prone
and time consuming:

uni x> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of a static library was developed to resolve tisadirantages of these various approaches. Re-
lated functions can be compiled into separate object medahel then packaged in a single static library
file. Application programs can then use any of the functiogfingd in the library by specifying a single file
name on the command line. For example, a program that usetsdhs from the standard C library and the
math library could be compiled and linked with a command effdrm

uni x> gcc main.c /usr/lib/libma /usr/lib/libc.a

At link time, the linker will only copy the object modules trare referenced by the program, which reduces
the size of the executable on disk and in memory. On the otredt,lthe application programmer only needs
to include the names of a few library files. (In fact, C compdévers always pasisi bc. a to the linker,

so the reference toi bc. a mentioned previously is unnecessary.)

On Unix systems, static libraries are stored on disk in aiqdar file format known as aarchive An
archive is a collection of concatenated relocatable oHjkxt, with a header that describes the size and
location of each member object file. Archive filenames areotihwith the. a suffix. To make our
discussion of libraries concrete, suppose that we wantaaige the vector routines in Figure 7.5 in a static
library calledl i bvect or. a.

To create the library, we would use the tool as follows:

7.6. SYMBOL RESOLUTION 637

code/link/addvec.c code/link/multvec.c
1 void addvec(int *x, int =*y, 1 void multvec(int *x, int xy,
2 int xz, int n) 2 int xz, int n)
3 { 3 {
4 int i; 4 int i;
5 5
6 for (i =0; i <n; i++) 6 for (i =0; i < n; i++4)
7 z[i] = x[i] + y[i]; 7 z[i] =x[i] = y[i];
8} 8 }
code/link/addvec.c code/link/multvec.c
(a)addvec. o (@nul tvec. o

Figure 7.5:Member object filesin |i bvect or. a.

uni x> gcc -c addvec.c nultvec.c
uni x> ar rcs |ibvector.a addvec.o nultvec.o

To use the library, we might write an application suchnas n2. ¢ in Figure 7.6, which invokes the
addvec library routine. (The include (header) fileect or . h defines the function prototypes for the
routines inl i bvect or. a.)

code/link/main2.c

/* main2.c */
#i ncl ude <stdi o. h>
#i ncl ude "vector. h"

int x[2] =
int y[2] =
int z[2];

{1, 2},
{3, 4};

© 00 N O O B~ WDN P

int main()

{

e
)

addvec(x, vy, z, 2);
printf("z =[% %]\n", z[0], z[1]);
return O;

=
w N

14 }

code/link/main2.c

Figure 7.6:Example program 2: This program calls member functions in the static | i bvect or . a library.

To build the executable, we would compile and link the inplesfirai n. o andl i bvect or. a:

uni x> gcc -2 -c main2.c
uni x> gcc -static -o p2 main2.0 ./libvector.a

