CS:APP2e Web Aside ECF.GRAPHS:
Process Graphs

Randal E. Bryant
David R. O’Hallaron

July 14, 2014

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Third Editigrby Randal E. Bryant and David R. O’Hallaron, published bgftice-Hall and
copyrighted 2016. In this document, all references begignvith “CS:APP3e " are to this book. More
information about the book is available @sapp. cs. crmu. edu.

This document is being made available to the public, sultigecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevigthout attribution.

1 Process Graphs

The process graph is a handy tool for understanding the E@haf\programs that use tHeor k andwai t
functions. Section CS:APP3e-8.4.2 mentions this idea g§sipg. In this note, we give a more thorough
treatment and show some examples from the textbook.

A process graplis a simple kind of precedence graph that captures the partlaring of program state-
ments. Each vertex,, corresponds to the execution of a statement in a C progradirested edge. — b
denotes that statememt'happens before” statemeit Edges can be labeled with information such as the
current value of a variable or the output of a preceging nt f statement. Each graph begins with a vertex
that corresponds to the parent process callimgn. This vertex has no inedges and exactly one outedge.
The sequence of vertices for each process ends with a venteesponding to a call texi t . This vertex
has one indedge and no outedges.

For example, Figure 1 shows the process graph for the exgmgmeam in Figure CS:APP3e-8.15. Initially,
the parent sets variableto 1. The parent callsor k, which creates a child process that runs concurrently
with the parent in its own private address space.

*Copyright(© 2011, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1 int main()

2 {

3 pid_t pid;

4 int x = 1;

5

6 pid = Fork(); child: x=2)
7 if (pid==0) { /* Child */ e o e
8 printf("child : x=%\n", ++x); _x==1 parent: x=0_

9 exit(0); main fork pri'ntf exit Parent
10 }

11

12 [+ Parent =*/

13 printf("parent: x=%\n", --X);

14 exit(0);

15 }

Figure 1:Process graph for Figure CS:APP3e-8.15.

For a program running on a single processor, tpological sortof the vertices in the corresponding
process graph represents a feasible total ordering of @tensénts in the program. Here's a simple way
to understand the idea of a topological sort: Given some petion of the vertices in the process graph,
draw the sequence of vertices from left to right, and themwdrach of the directed edges. The permutation
is a topological sort if and only if each edge in the drawinggfrom left to right. Thus, in our example
program in Figure 1, thpr i nt f statements in the parent and child can occur in either orglegiise each
of the orderings corresponds to some topological sort ofjthph vertices.

The process graph can be especially helpful in understgmatiograms with nestefdor k calls. For exam-
ple, Figure 2 shows a program with two callstor k in the source code. The corresponding process graph
helps us see that this program runs four processes, eachiaf miakes a call tpr i nt f, and which can
execute in any order.

_ hello
1 1nt mal n() printf exit
2 {) hello _
3 'EOT k() ’ fork printf exit
4 or O;)) hello
5 printf("hello\n"); ® ®
. . printf exit
6 exit(0);
hello
7 } ° o o
main fork fork printf exit

Figure 2:Process graph for Figure CS:APP3e-8.16(c).

As another example, Figure 3 shows the process graph fordigegm in Practice Problem CS:APP3e-8.2,
where the child process executes fara nt f statements, while the parent executes only one.

The process graph can also help you to understand progransigbwai t to synchronize with child
processes. For example, Figure 4 shows the process gragitefprogram in Practice Problem CS:APP3e-
8.3. The sequencesbc, abce, andbacc are possible because they correspond to topological sbtite o

p— —

© 00 N O O b~ WN P

—

nt main()

int x = 1;

printfl: x=2 printf2: x=1

printf printf exit

i f (For k() o O) ==1 printf2: x=0
printf("printfl: x=%\n", ++x); o o o " e

printf("printf2: x=%\n", --x); main fork printf exit
exit(0);

Figure 3:Process graph for Practice Problem CS:APP3e-8.2

process graph. However, sequences sudit@sand cbca do not correspond to any topological sort and
thus are not feasible.

-~ =

© 00 N o O b~ WDN PP

=
= o

12 }

nt main()

if (Fork() == 0) {

printf("a");
} e a PR exit
el se { printf printf
printf("b"); o . b o C e
wai t pid(-1, NULL, 0); main fork printf waitpid printf exit
}
printf("c"
exit(0);

Figure 4:Process graph for Practice Problem CS:APP3e-8.3

Figure 5 shows another example, from Practice Problem CS3&F8.4. For part A, we can determine the
number of lines of output by simply counting the numberpofi nt f vertices in the process graph. In
this case, there are six such vertices, and thus the progitimprint six lines of output. For part B, any
output sequence corresponding to a topological sort of taphgis possible. For example: “Hello”, “1”,
“0”, “Bye”, “2", “Bye”.

1 int main()

2 {

3 i nt status;

4 pid_t pid; o o "V° Lqexit(2)

5 printf printf

6 printf("Hello\n"); - o 2110 e 0 o 2 ,q BYE o
7 p| d = For k(), main printf fork printf waitpid printf printf exit
8 printf("%l\n", !pid);

9 if (pid!=0) {

10 if (waitpid(-1, &status, 0) > 0) {

11 if (WFEXI TED(status) != 0)

12 printf("%l\n", WEXI TSTATUS(status));

13 }

14 }

15 printf("Bye\n");

16 exit(2);

17 }

Figure 5:Process graph for Practice Problem CS:APP3e-8.4

