
CS:APP2e Web Aside ECF:GRAPHS:
Process Graphs∗

Randal E. Bryant
David R. O’Hallaron

July 14, 2014

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Third Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall and
copyrighted 2016. In this document, all references beginning with “CS:APP3e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Process Graphs

The process graph is a handy tool for understanding the behavior of programs that use thefork andwait
functions. Section CS:APP3e-8.4.2 mentions this idea in passing. In this note, we give a more thorough
treatment and show some examples from the textbook.

A process graphis a simple kind of precedence graph that captures the partial ordering of program state-
ments. Each vertex,a, corresponds to the execution of a statement in a C program. Adirected edgea → b

denotes that statementa “happens before” statementb. Edges can be labeled with information such as the
current value of a variable or the output of a precedingprintf statement. Each graph begins with a vertex
that corresponds to the parent process callingmain. This vertex has no inedges and exactly one outedge.
The sequence of vertices for each process ends with a vertex corresponding to a call toexit. This vertex
has one indedge and no outedges.

For example, Figure 1 shows the process graph for the exampleprogram in Figure CS:APP3e-8.15. Initially,
the parent sets variablex to 1. The parent callsfork, which creates a child process that runs concurrently
with the parent in its own private address space.

∗Copyright c© 2011, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

1 int main()
2 {
3 pid_t pid;
4 int x = 1;
5

6 pid = Fork();
7 if (pid == 0) { /* Child */
8 printf("child : x=%d\n", ++x);
9 exit(0);

10 }
11

12 /* Parent */
13 printf("parent: x=%d\n", --x);
14 exit(0);
15 }

child: x=2 

main fork printf 

printf 

x==1 

exit 

parent: x=0 

exit 
Parent 

Child 

Figure 1:Process graph for Figure CS:APP3e-8.15.

For a program running on a single processor, anytopological sortof the vertices in the corresponding
process graph represents a feasible total ordering of the statements in the program. Here’s a simple way
to understand the idea of a topological sort: Given some permutation of the vertices in the process graph,
draw the sequence of vertices from left to right, and then draw each of the directed edges. The permutation
is a topological sort if and only if each edge in the drawing goes from left to right. Thus, in our example
program in Figure 1, theprintf statements in the parent and child can occur in either order because each
of the orderings corresponds to some topological sort of thegraph vertices.

The process graph can be especially helpful in understanding programs with nestedfork calls. For exam-
ple, Figure 2 shows a program with two calls tofork in the source code. The corresponding process graph
helps us see that this program runs four processes, each of which makes a call toprintf, and which can
execute in any order.

1 int main()
2 {
3 Fork();
4 Fork();
5 printf("hello\n");
6 exit(0);
7 }

main fork printf 

printf exit 

exit 

hello 

fork 

fork printf 

printf exit 

exit 

hello 

hello 

hello 

Figure 2:Process graph for Figure CS:APP3e-8.16(c).

As another example, Figure 3 shows the process graph for the program in Practice Problem CS:APP3e-8.2,
where the child process executes twoprintf statements, while the parent executes only one.

The process graph can also help you to understand programs that usewait to synchronize with child
processes. For example, Figure 4 shows the process graph forthe program in Practice Problem CS:APP3e-
8.3. The sequencesacbc, abcc, andbacc are possible because they correspond to topological sorts of the



3

1 int main()
2 {
3 int x = 1;
4

5 if (Fork() == 0)
6 printf("printf1: x=%d\n", ++x);
7 printf("printf2: x=%d\n", --x);
8 exit(0);
9 }

printf1: x=2 

main fork printf 

printf 

printf2: x=0 x==1 

printf2: x=1 

exit 

printf exit 

Figure 3:Process graph for Practice Problem CS:APP3e-8.2

process graph. However, sequences such asbcac andcbca do not correspond to any topological sort and
thus are not feasible.

1 int main()
2 {
3 if (Fork() == 0) {
4 printf("a");
5 }
6 else {
7 printf("b");
8 waitpid(-1, NULL, 0);
9 }

10 printf("c");
11 exit(0);
12 }

a 

main fork printf 

printf 

exit 

b 

waitpid 

c 

printf 

exit 
c 

printf 

Figure 4:Process graph for Practice Problem CS:APP3e-8.3

Figure 5 shows another example, from Practice Problem CS:APP3e-8.4. For part A, we can determine the
number of lines of output by simply counting the number ofprintf vertices in the process graph. In
this case, there are six such vertices, and thus the program will print six lines of output. For part B, any
output sequence corresponding to a topological sort of the graph is possible. For example: “Hello”, “1”,
“0”, “Bye”, “2”, “Bye”.



4

1 int main()
2 {
3 int status;
4 pid_t pid;
5

6 printf("Hello\n");
7 pid = Fork();
8 printf("%d\n", !pid);
9 if (pid != 0) {

10 if (waitpid(-1, &status, 0) > 0) {
11 if (WIFEXITED(status) != 0)
12 printf("%d\n", WEXITSTATUS(status));
13 }
14 }
15 printf("Bye\n");
16 exit(2);
17 }

0 

printf 

exit(2) 
1 

main printf fork exit printf 

Hello 

printf 

Bye 

2 

printf waitpid 

Bye 

printf 

Figure 5:Process graph for Practice Problem CS:APP3e-8.4


