
CS:APP2e Web Aside ECF:SAFETY:
Async-signal-safety∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 The Problem

The examples in Figures CS:APP2e-8.31 – CS:APP2e-8.33 contain a bug that introduces a potential dead-
lock, where the program waits for an event that will never occur.1 The problem exists because (1) the main
routine calls a function that is not “safe” (in this caseprintf) in a code section where it can be interrupted
by the receipt of a SIGCHLD signal, and (2) the SIGCHLD handler calls the same unsafeprintf function.

Theprintf function acquires a console lock, calls thewrite system call, and then releases the console
lock. If theprintf function in the main routine is interrupted by the receipt ofa SIGCHLD signal after it
acquires the console lock and before it releases the lock, then the process will deadlock when theprintf
function in the SIGCHLD handler tries to acquire the same console lock.

To understand how to avoid such problems, we first need to introduce the idea of async-signal-safe functions.

∗Copyright c© 2011, R. E. Bryant, D. R. O’Hallaron. All rights reserved.
1Deadlocks are discussed in Section CS:APP2e-12.7.5.

1



2

2 Async-signal-safe Functions

The general rule is that you should only call functions that areasync-signal-safefrom within signal handlers.
A function is said to be async-signal-safe if it is either reentrant or non-interruptible by signals.2 The
functions listed in Figure 1 are guaranteed by the Posix standard to be async-signal-safe, and thus can be
safely called from within signal handlers. Notice thatprintf is not included in this list, whilewrite is.

In general, if the receipt of a signal interrupts the execution of an arbitrary unsafe function, and the resulting
signal handling code then calls that unsafe function, then the behavior of the program is said to beundefined.
Depending on exactly when the unsafe function call is interrupted, the program might run correctly, produce
incorrect results, or even deadlock.

3 Solution Approaches

There are a couple of of ways to fix the bug in Figures CS:APP2e-8.31 – CS:APP2e-8.33. One approach
is to usesigprocmask to block SIGCHLD around all calls toprintf that could be interrupted by the
receipt of a SIGCHLD signal. While safe, this approach has the undesirable effect of delaying the receipt
of SIGCHLD across wide swaths of the program’s execution, which defeats the purpose of signals as low-
overhead notification mechanism. Further, in general it could be quite cumbersome to modify all invocations
of popular functions likeprintf.

A simpler and more efficient approach is to replace calls toprintf in the SIGCHLD handler

printf("Handler reaped child %d\n", (int)pid);

with calls tosnprintf andwrite

snprintf(buf, MAXBUF, "Handler reaped child %d\n", (int)pid);
write(1, buf, strlen(buf));

Thewrite function is async-signal-safe, and thesnprintf implementation is (highly likely) reentrant,
and thus async-signal-safe.

Acknowledgments

Thanks to Prof. Godmar Back, Virginia Tech, for identifyingthe bug and suggesting the different solution
approaches.

2Reentrant functions are discussed in Section CS:APP2e-12.7.2.



3

Exit fpathconf read sigset
exit fstat readlink sigsuspend

abort fsync recv sockatmark
accept ftruncate recvfrom socket
access getegid recvmsg socketpair
aio error geteuid rename stat
aio return getgid rmdir symlink
aio suspend getgroups select sysconf
alarm getpeername sempost tcdrain
bind getpgrp send tcflow
cfgetispeed getpid sendmsg tcflush
cfgetospeed getppid sendto tcgetattr
cfsetispeed getsockname setgid tcgetpgrp
cfsetospeed getsockopt setpgid tcsendbreak
chdir getuid setsid tcsetattr
chmod kill setsockopt tcsetpgrp
chown link setuid time
clock gettime listen shutdown timergetoverrun
close lseek sigaction timergettime
connect lstat sigaddset timersettime
creat mkdir sigdelset times
dup mkfifo sigemptyset umask
dup2 open sigfillset uname
execle pathconf sigismember unlink
execve pause sleep utime
fchmod pipe signal wait
fchown poll sigpause waitpid
fcntl posix traceevent sigpending write
fdatasync pselect sigprocmask
fork raise sigqueue

Figure 1:Async-signal-safe Functions.


